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Despite recent advances in long-read sequencing technologies, plant genome Sample |Sum (Gbp)| n | | | 7 Complete A B C P
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Large initiatives such as the Vertebrate Genomes Project and the Human
Telomere-To-Telomere (T2T) consortium have established best practices and
industry standards for assembling animal genomes, but it remains unclear how
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Table 1. Assembly stats for screened HiCanu contigs®.
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these approaches translate to plant genomes’2. Here, we use PacBio Circular ‘ ——
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scaffolding methods, and current best practices and recommendations. 24 - by Figure 4. (A) A circos plot from Alonge and
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,J._ CCS coverage —_ - a of the M82 genome'2. (B) A dotplot
Ultra-Long - %“W depicting an inversion in an introgression
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A New Reference for Physalis grisea
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Figure 2. A genome browser view of a scaffolding patch made by
Grafter®. A CCS coverage dropout initially caused a contig break that was
subsequently patched and validated by ONT reads.

We are using these assembly techniques to establish the first reference
genome for Physalis grisea (groundcherry), a wild nightshade orphan
crop. This work highlights the potential to rapidly establish high-quality
reference assemblies for wild plant species.

contig screen

chloroplast ® >
>

polishing
R v

| . .
: contig correction
v @

RefSeq
bacterial e .
genomes | scaffolding
S’ . 1_ .
curation

)
=
5 I
o
0 ONT draft
HiCanu
Grafter
. Hi-C
scaffolding
validation
?tl py
D
©
D
23
C
>
SL4.0 =
RagTag scaffold SALSA2 9
5
Q
D
>
@
‘ RagTag merge |<
£ J

Hybrid Scaffolding with RagTag
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Figure 5. (A) Progressive stages of floral organ development for the G20
P. grisea accession. (B) The proportion of unique k-mers as a function of k
from reference genomes representing multiple species. (C) An Nchart of
multiple P. grisea assemblies’s. (D) A Hi-C heat map of the CCS/Bionano
scaffolds.

Figure 1: A workflow diagram depicting the assembly process. The top
“data” panel shows the major data types used in the pipeline>%’. The
“pipeline” panel first shows the general assembly pipeline (top) while the
blue portion (bottom) depicts the scaffolding step in more detail. Red
arrows indicate the path of the primary, and ultimately final assembly.

Figure 3: M82 HiCanu contigs were scaffolded using two different
techniques: Hi-C-based de novo scaffolding (SALSA2) and synteny
scaffolding (RagTag)'®". A third set of scaffolds was derived by merging
these assemblies with RagTag “merge”. (A) The core data structure of
RagTag "merge” represents scaffolding joins as edges in a graph. Each
contig is represented by two nodes (start and end) which share an implicit
edge (dotted lines). This example depicts a bubble in the graph caused by
a scaffolding ambiguity. Edges connecting contigs are weighted by a Hi-C
scoring function 4. (B) An Nchart depicting the contiguity of these three
assemblies. (C) Hi-C heat maps for the three assemblies. RagTag
“merge” reaches near-chromosome-scale while leveraging Hi-C to resolve
scaffolding ambiguities and avoid reference bias.
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