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Modern Plant Genome Assembly

Despite recent advances in long-read sequencing technologies, plant genome 
assembly remains challenging. In particular, modern assemblies often fail to 
accurately reconstruct genomic repeats that are pervasive in plant genomes. 
Large initiatives such as the Vertebrate Genomes Project and the Human 
Telomere-To-Telomere (T2T) consortium have established best practices and 
industry standards for assembling animal genomes, but it remains unclear how 
these approaches translate to plant genomes1,2. Here, we use PacBio Circular 
Consensus accurate long-reads (CCS), Oxford Nanopore ultra-long reads 
(ONT), and chromatin conformation capture (Hi-C) to establish platinum-level 
genome assemblies for tomato and groundcherry. We share initial results, new 
scaffolding methods, and current best practices and recommendations.
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Figure 1: A workflow diagram depicting the assembly process. The top 
“data” panel shows the major data types used in the pipeline5,6,7. The 
“pipeline” panel first shows the general assembly pipeline (top) while the 
blue portion (bottom) depicts the scaffolding step in more detail. Red 
arrows indicate the path of the primary, and ultimately final assembly. 

Figure 2. A genome browser view of a scaffolding patch made by 
Grafter9. A CCS coverage dropout initially caused a contig break that was 
subsequently patched and validated by ONT reads. 

Hybrid Scaffolding with RagTag

Figure 3: M82 HiCanu contigs were scaffolded using two different 
techniques: Hi-C-based de novo scaffolding (SALSA2) and synteny 
scaffolding (RagTag)10,11. A third set of scaffolds was derived by merging 
these assemblies with RagTag “merge”. (A) The core data structure of 
RagTag “merge” represents scaffolding joins as edges in a graph. Each 
contig is represented by two nodes (start and end) which share an implicit 
edge (dotted lines). This example depicts a bubble in the graph caused by 
a scaffolding ambiguity. Edges connecting contigs are weighted by a Hi-C 
scoring function h. (B) An Nchart depicting the contiguity of these three 
assemblies. (C) Hi-C heat maps for the three assemblies. RagTag 
“merge” reaches near-chromosome-scale while leveraging Hi-C to resolve 
scaffolding ambiguities and avoid reference bias.

M82 Introgressions Contain Large Inversions

Figure 5. (A) Progressive stages of floral organ development for the G20 
P. grisea accession. (B) The proportion of unique k-mers as a function of k 
from reference genomes representing multiple species. (C) An Nchart of 
multiple P. grisea assemblies13. (D) A Hi-C heat map of the CCS/Bionano 
scaffolds.

A New Reference for Physalis grisea
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Table 1. Assembly stats for screened HiCanu contigs8. 
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We are using these assembly techniques to establish the first reference 
genome for Physalis grisea (groundcherry), a wild nightshade orphan 
crop. This work highlights the potential to rapidly establish high-quality 
reference assemblies for wild plant species.
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Figure 4. (A) A circos plot from Alonge and 
Wang et al. showing introgressed regions 
of the M82 genome12. (B) A dotplot 
depicting an inversion in an introgression 
on chr5. (C) Aligning M82 Hi-C to SL4.0 
shows an inversion signature. Black 
arrows point to inversion breakpoints. 
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